Überspringen

Jetzt anmelden und zu Sonderkonditionen dabei sein

Melden Sie sich bis zum 28.02.2025 unverbindlich an und profitieren Sie von unserem Frühbucherpreis. Außerdem haben wir auch besondere Standpakete und Gemeinschaftsstände z.B. für Kleinunternehmen oder Start-ups im Angebot, um Ihnen einen besonders flexiblen und unkomplizierten Messeauftritt zu ermöglichen.

Zurück

Additive Fertigung, Automatisierung und Handling, Elektrotechnik/Elektronik

Durchbruch bei 3D-gedruckten Sensoren

30.08.2021

Der 3D-Druck gewinnt auch in der Automatisierung und in der Elektrotechnik immer stärker an Bedeutung. Allerdings stellte bisher die Integration von elektronischen Komponenten und somit auch die Herstellung von individualisierten Sensoren eine Herausforderung dar. Hier hat jetzt das Fraunhofer IPA zusammen mit den baden-württembergischen Unternehmen Arburg und Balluff einen Durchbruch erzielt.

Für Aufgaben in der Automatisierungstechnik sind Sensoren in individualisierter Form interessant, da diese vielseitig eingesetzt werden können. Induktive Näherungssensoren sind in zylindrischen Metallgehäusen verfügbar, in die eine Spule, eine Platine und ein Stecker in einer starren Konstellation eingebaut werden – eine Standard-Komponente mit festgelegter Geometrie. In der Automatisierungstechnik werden induktive Näherungssensoren in großer Stückzahl eingesetzt, um metallische Objekte berührungslos zu erkennen. Sie können in industriellen Anwendungen jedoch nicht nur registrieren, dass sich ein Bauteil angenähert hat, sondern auch in welcher Entfernung es sich befindet. Allerdings gibt es noch keine induktiven Näherungssensoren, die sich mit ihrer Gehäuseform in eine bestimmte Umgebung einpassen, etwa in einen Roboterarmgreiferfinger.

Bild: Fraunhofer IPA
Bild: Fraunhofer IPA

Bild: Fraunhofer IPA

Warum also nicht das Gehäuse des Sensors aus Kunststoff drucken, um es in beliebiger Form herstellen zu können? Genau das hat ein Forschungsteam vom Zentrum für additive Produktion am Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA nun getan. Unterstützt wurde es dabei von Arburg GmbH & Co. KG sowie dem Sensor- und Automati¬sierungsspezialisten Balluff GmbH. Für das Gehäuse des Sensors war ein Kunststoff mit hoher Durchschlagfestigkeit und flammhemmenden Eigenschaften gefordert. Die Fachleute wählten den teilkristallinen Kunststoff Polybutylenterephthalat (PBT), der standardmäßig als Spritzgusswerkstoff für die Herstellung von Elektronikgehäusen eingesetzt wird. Allerdings wurde eine solche Materialtype bislang nicht für den 3D-Druck verwendet, sodass Pionierarbeit nötig war.

Leiterbahnen im 3D-Druck

Der Kunststoff kam als Granulat in den sogenannten Freeformer von Arburg. Dieser verfügte über eine Materialaufbereitung mit spezieller Plastifizierschnecke. Nach dem Aufschmelzen des Standard-Granulats folgte das werkzeuglose Freiformen: Ein hochfrequent getakteter Düsenverschluss trug kleinste Kunststofftropfen aus, die mit Hilfe eines beweglichen Bauteilträgers exakt positioniert werden konnten. Auf diese Weise entstanden im Freeformer Schicht für Schicht dreidimensionale Bauteile mit Kavitäten, in die während des Druckprozesses Bauteile eingelegt werden konnten. Um dies zu ermöglichen, unterbrach der Freeformer den Bauprozess automatisch in den jeweiligen Schichten, sodass es möglich war Spule, Platine und Stecker passgenau zu integrieren. Mit einem Dispenser konnten im Anschluss, in einer separaten Anlage, die Leiterbahnen aus Silber im Inneren des Gehäuses erzeugt werden. Schlussendlich war es notwendig die Kavitäten mit dem Freeformer zu überdrucken und mit Polyurethan zu vergießen.

Das Team stellte auf diese Weise mehr als 30 Demonstratoren der individualisierten Sensoren her, um sie anschließend auf Herz und Nieren zu testen: Die Bauteile mussten etwa Temperaturwechsel und Vibrationen verkraften, sie mussten wasserdicht sein und einen elektrischen Isolationstest bestehen. Durch Optimierung von Design und Herstellungsprozess wurden die Tests am Ende erfolgreich absolviert. Das Forschungsprojekt "Elektronische Funktionsintegration in additiv gefertigte Bau-teile" hatte eine Laufzeit von anderthalb Jahren. Stefan Pfeffer, der das Projekt am Fraunhofer IPA verantwortete, forscht derzeit in Kooperation mit Arburg daran, wie zukünftig auch leitfähige Kunststoffe eingesetzt werden können, um weitere Anwendungsfelder zu erschließen.

AM-VERFAHREN:

Additive Manufacturing für Polymere
Einen strukturierten Überblick in die komplexe und vielschichtige Welt der additiven Fertigungsverfahren, Prozessschritte und Anwendungsfelder liefert Ihnen unser AM Field Guide.

MEHR INFOS UNTER:

arburg.com

ipa.fraunhofer.de

Tags

  • Automatisierung und Handling
  • Additive Fertigung
  • Elektrotechnik und Elektronik